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SHAPING IN THE 21ST CENTURY: MOVING PERCENTILE
SCHEDULES INTO APPLIED SETTINGS

GRreGORY GALBICKA
WALTER REED ARMY INSTITUTE OF RESEARCH

The present paper provides a primer on percentile reinforcement schedules, which have been used
for two decades to study response differentiation and shaping in the laboratory. Arranged in applied
settings, percentile procedures could be used to specify response criteria, standardizing treatment
across subjects, trainers, and times to provide a more consistent training environment while main-
taining the sensitivity to the individual’s repertoire that is the hallmark of shaping. Percentile
schedules are also valuable tools in analyzing the variables of which responding is a function, both
inside and outside the laboratory. Finally, by formalizing the rules of shaping, percentile schedules
provide a useful heuristic of the processes involved in shaping behavior, even for those situations
that may not easily permit their implementation. As such, they may help further sensitize trainers
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and researchers alike to variables of critical importance in behavior change.
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In behavior analysis, it is often desirable to take
a behavioral repertoire and mold it into something
different. In developmental disabilities, self-care,
social, and vocational skills often need to be trained;
in sports psychology, more skilled performance is
a frequent goal; and education itself is nothing but
the modification of behavioral repertoires. When
dealing with operant behavior, this change is gen-
erally effected via a process termed shaping, a
shorthand for differential reinforcement of succes-
sive approximations to a terminal response (see
Skinner, 1953). Organisms and environments con-
tinuously shape the behavior of other organisms by
providing consequences differentially following par-
ticular responses demonstrating certain criterion
characteristics. A response (e.g., adding some wine
to the spaghetti sauce) followed by a positive re-
inforcer (e.g., a better tasting sauce that wins the
approval of your dinner companions) will increase
in frequency over one provided no consequences,
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changing the response distribution to include rel-
atively more responses similar to the type reinforced.
Extinction, on the other hand, not only decreases
response frequency but also temporarily increases
the variability in responding, thereby increasing the
probability that a response from the reinforced class
will occur. Shaping occurs when reinforcement and
extinction are used in combination with a system-
atically changing set of response criteria to reinforce
responding differentially (i.e., to reinforce responses
exhibiting some criterional attribute while not re-
inforcing noncriterional responses). Thus, the suc-
cessful shaper must carefully ascertain characteris-
tics of an individual’s present response repertoire,
explicitly define characteristics the final behavior
will have at the end of training, and plot a course
between reinforcement and extinction that will bring
the right responses along at the right time, fostering
the final behavioral sequence while never losing
responding altogether.

For such a prevalent technique, shaping is subject
to considerable variation between subjects, between
trainers, and even with a single subject—trainer pair
at different times. The “‘rules’ of shaping are typ-
ically qualitative in nature only, with little empirical
data on the effects of quantitative variation. As
such, the rules constitute more an art form than a
science, and the attitude is often that shaping is
something you can only learn by doing—it is con-
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tingency shaped, not rule governed. The contin-
gencies that shape effective shaping are themselves
found in the effectiveness of interactions between
trainer and client, and will necessarily vary with a
change in either or both of the individuals. Hence,
developing a quantitative science of shaping may
seem, if not beyond reach, at least difficult to the
point of having little applied relevance.

The present paper argues against this view. It
presents a primer on the workings of percentile
reinforcement schedules, procedures that have been
used in laboratory studies of response differentiation
and shaping for over two decades. Percentile sched-
ules disassemble the process of shaping into its
constituent components, translate those compo-
nents into simple, mathematical statements, and
then use these equations, with parameters specified
by the experimenter or trainer, to determine what
presently constitutes a criterional response and should
therefore be reinforced.

Percentile schedules, however, do more than au-
tomate shaping. In addition, they make explicit
and objective the criteria that define responses as
criterional or noncriterional throughout acquisition
and maintenance, providing explicit prior control
over reinforcement density as well as criterional
response probability. Because of this, they provide
almost complete independence from trainer- and
subject-related variables. This allows all subjects to
be trained in a specified manner despite changes in
the trainer or the subject, or at different points in
the differentiation.

Shaping’s Golden Rules

As a prelude to presenting the mechanics of
percentile schedules, it may be helpful to consider
the verbal “‘rules” of shaping as they have been
distilled from experience, and as they are generally
presented to students and trainers when teaching
the fundamentals of shaping. This presentation is
explicitly rudimentary, in that it attempts to pro-
vide a common starting point for the discussion of
how to transform the verbal rules into more explidit,
quantitative ones. A review of these rules clarifies
the operation of petcentile schedules by providing
a point of correspondence between what we already
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know verbally about shaping and what percentile
schedules provide in the form of equations.

Shaping involves differential reinforcement of
operant behavior. Because a behavior must occur
prior to being reinforced, the first rule of shaping
is generally some variant of *‘Start where the subject
is”’—set the initial reinforcement criterion at a value
within the subject’s current repertoire. That is, the
current repertoire will be characterized by a distri-
bution of responses varying across some range of
values. Requiring values completely outside this
distribution at the beginning of training transforms
shaping into extinction, because all responses emit-
ted will fail to meet the reinforcement criterion and
thus will not produce reinforcement.

The next rule is generally of the form ‘‘Clearly
define the terminal response.”” This ensures that we
know when the differentiation has been successful
and also often helps to define important behavioral
dimensions and potential intermediate steps. Rule
1 provides a clear understanding of the subject’s
initial behavioral distribution. Rule 2 specifies char-
acteristics of the ultimate distribution once shaping
is complete. By comparing attributes of the initial
and terminal responses for the ways in which they
differ, an idea of the kinds of response characteristics
that should be measured will emerge. For example,
suppose I am interested in becoming a long-distance
runner. Given my previous interest in running (zero),
it seems to be a good idea to establish explicit
reinforcement contingendcies external to the joy of
running per se to shape running. Setting aside ques-
tions of finding a suitable reinforcer and someone
to deliver them appropriately, the main problem
is to develop a program of differential reinforcement
contingencies that will result in my ultimately emit-
ting the terminal response of completing a mara-
thon. I can probably dispense immediately with
measuring sit-ups and concentrate on running, be-
cause the dimension of interest has something to
do with running. I also need not concern myself
with running speed, only stamina (i.e., I am not
foolish enough to want to win my first marathon,
only to finish it). Further, focusing on the terminal
response helps to define the response unit as “‘run-
ning 26 miles and 385 yards,” emphasizing that
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distance is the functional aspect of a running episode
being differentiated, not other possible aspects or
units (e.g., number of strides). Other units could
be shaped without necessarily achieving the ter-
minal response of completing a marathon (e.g.,
number of strides can increase with little change in
distance if strides shorten). Emphasizing the dif-
ference in distance between the initial and terminal
runs forces that dimension to be the functional unit
of behavior. Finally, by noting the difference be-
tween the current level and the goal, a number of
finite criteria can be defined that increase the re-
quired distance run in fixed arithmetic or expo-
nential increments (i.e., adding or multiplying a
constant to each level to generate a series of inter-
mediate values). All this follows as a consequence
of specifying in advance where responding is (Rule
1) and where it will end (Rule 2).

The third rule is “Use small steps.” To use the
running example again, this rule indicates that the
smaller the increment in the reinforcement criterion
(i.e., distance run) at each criterion change, the less
likely it will be that responding will reach a point
at which the variation from instance to instance
will not include enough reinforceable values to
maintain a fair degree of behavior. Compare two
training regimens, one of which increases the re-
inforcement criterion in increments of half a mile
and the other of which increases it by 5 miles at
each criterion shift. With each change in the cri-
terion, the natural variation in running stamina all
but guarantees that the new criterion will be met
by a run in the near future under the former reg-
imen, whereas requiring a more substantial change
(the latter regimen) decreases the probability that
the criterion will be met following each change.

The last rule, not always taught explicitly, is
“Reinforce movement, not position.” Criteria es-
tablished in terms of the change they generate will
more likely result in behavior change than those
anchored to some static quality or product. For the
running example, this rule suggests that reinforce-
ment contingent on a specified increase in distance
from the previous run (i.e., x miles farther) will
be more successful in increasing running than are
criteria set to specific distances. Criteria that em-
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phasize behavior change may increase the proba-
bility that behavior will change when the criterion
is again shifted, increasing the likelihood that sub-
sequent criteria will also be met.

Shaping’s Foundations

These rules work because of the manner in which
reinforcement and extinction, the component pro-
cesses of differential reinforcement, work. In Skin-
ner’s (1938) earliest writings on operant behavior,
he noted that reinforcement increased the rate of a
class of responses, not the rate of a particular re-
sponse. Members of this class vary with respect to
the exact distribution of any of a number of mea-
surable response characteristics (e.g., location, in-
tensity, duration, topography, etc.), but are in-
variant with respect to their function—they all
produce the consequence in question. If that con-
sequence reinforces the operant, similar responses
will more likely recur.

Extinction is often presented as the opposite of
reinforcement, but it is very much more. No longer
reinforcing an operant ultimately does decrease the
rate of the response class. If this was the only effect
of extinction, however, learning would be very con-
strained. Because reinforcement typically generates
responses similar to those previously reinforced, some
other mechanism must generate novel behaviors in
response to a changing criterion. That mechanism
is extinction. Removing reinforcement initially gen-
erates variability in behavior (see Galbicka, 1988,
for a review of the experimental literature). As the
patterns previously learned begin to extinguish, they
recombine with other response units occasioned by
the same environment; oftentimes previously trained
units reemerge (e.g., Epstein, 1983) or other, pre-
viously ineffective, sources of control generate novel
responses. This variability is important because it
increases the probability that a response meeting
the new criteria will be emitted. When we check
into the hotel for a convention and are confronted
by a bathroom fixture we have never seen before,
we first behave in a fashion appropriate to the one
at home. Turn the handle, or twist the dial—but
if none of those work, we slowly start trying other
responses. Where do they come from? They are
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Figure 1. [Illustration of how different criteria (the ver-

tical lines in the bottom two panels) applied to a single
response distribution establish different overall reinforcement
densities and differences in the degree to which reinforcement
is correlated with extreme values.

extinction-induced variations in responding that re-
late to our past histories with respect to buttons,
levers, dials, and so forth. Push it, punch it, turn
it, just keep varying—sooner or later something
will work. Reinforcement, then, generates responses
that are identical in function and similar in ap-
pearance to those preceding it. Extinction, for a
while at least, is an aid to learning, because it
generates a local high rate of variable behavior that
can come under control of the changing contin-
gencies that define a differentiation. However, if
this transient increase in variability does not suc-
cessfully induce a member of the new criterion class,
extinction ultimately will eliminate responding.
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The temporary nature of this effect is the con-
ceptual basis of Rule 3. Step size determines the
probability of a criterional response, which in turn
determines when reinforcers are presented. Suppose
that the top distribution in Figure 1 refers to the
current distribution of a behavior, and suppose that
we wish to generate longer values. (The actual
response as well as the values represented along the
response dimension are irrelevant for now; we sim-
ply want to increase the frequency of “longer”
values and thereby shift the entire distribution to
the right.) As a first step towards this end, we could
decide to impose the criteria indicated by the ver-
tical line in the middle panel and then reinforce
only responses longer than that value (i.e., the shad-
ed portion). Alternatively, the criterion could be set
at the value indicated by the dashed line in the
lower panel. The criterion in the middle panel is
relatively lax, in that a majority of responses ob-
served during the baseline would exceed the cri-
terion. If behavior does not change (i.e., if the
distribution of behavior remains constant), most
responses will still produce reinforcement (the shad-
ed portion of the distribution). The lower panel
shows a much more stringent criterion; much longer
values are required for reinforcement, and if the
distribution remains constant only a small propot-
tion of responses are reinforced. Which step size
will lead to the most rapid shaping? There are
advantages and disadvantages of either selection.
The criterion in the middle panel protects against
the complete elimination of behavior by all but
guaranteeing a relatively high reinforcement density
after the criterion is put into effect. However, that
protection comes at the expense of differential re-
inforcement—the range of values reinforced is very
large and includes many relatively short and me-
dium values as well as long ones. As such, it is not
likely that very long values will soon begin to pre-
dominate. The advantage of highly differential re-
inforcement resides with the stricter criterion de-
picted in the lower panel. Because only relatively
large-valued responses produce reinforcement, sim-
ilar large-valued ones will more likely recur once
reinforced. The disadvantage is that responding
could extinguish altogether before a criterional re-
sponse occurs.
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Deciding between these two alternatives is the
crux of shaping; establishing criteria that provide
sufficient but not excessive reinforcement is central
to the success of the procedure. Less often appre-
ciated is the importance of shifting criteria at the
right time. Assume for the moment that we some-
how solve the dilemma and set the criterion at the
point denoted by the dashed vertical line in the top
panel of Figure 2. If all baseline responses were
reinforced, then imposing the criterion will result
in an immediate substantial decrease in the density
of reinforcement (i.e., only the initially small pro-
portion of responses above the criterion will produce
reinforcement). This partial extinction is important
in producing the local effects noted above, ulti-
mately generating greater values that will exceed
the critetion and be reinforced. After exposure to
the criterion for some period of time, responding
might come to resemble the distribution depicted
in the middle panel. After even further exposure,
it might resemble that shown in the lower panel.
The criterion (i.e., the vertical line) remains un-
changed in each panel, but, because of the pro-
gressive change in the distribution, more responses
meet criterion with extended exposure (approxi-
mately one half of the distribution meets criterion
in the middle panel, whereas practically all re-
sponses exceed the criterion in the lower panel).
When should the next level be imposed? That is,
when should the critetion be shifted towards even
greater values?

The conservative approach might be to provide
the client with substantial training and ensure a
high probability of long responses before increasing
the criterion. However, consider what happens to
reinforcement frequency each time the criterion is
changed. Because the criterion by definition in-
cludes only a portion of the current distribution,
imposing a new criterion is always associated with
a decrease in reinforcement density. Only by shift-
ing the distribution of responses emitted to even
longer values can the reinforcement density be re-
turned to its former level. A plot of reinforcement
density across time would reveal a pattern like a
sawtooth; with each change in the criterion, rein-
forcement density drops abruptly, but as behavior
gradually changes to include more and more cri-
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Figure 2. Three hypothetical distributions illustrating
responding under baseline (top) and after exposure to a par-
ticular differential reinforcement criterion (i.e., responses lon-
ger than the value indicated by the vertical line produce
reinforcement) for a moderate period (middle panel) or for
a more extended period (lower panel).

terional responses, reinforcement density gradually
increases until the cycle repeats with the next cri-
terion change. This cyclic change in reinforcement
density is more pronounced following extended
training. That is, reinforcement density can fall
from a maximum probability of about .5 if the
criterion is changed when the distribution of re-
sponding resembles that shown in the middle panel
of Figure 2. Extended training provides a higher
reinforcement probability (almost 1.0; see the lower
panel of Figure 2) prior to the criterion shift, and
hence a greater potential reduction in reinforcement
frequency from that value once the criterion changes.

This discussion suggests a corollary to Rules 1
and 3, namely that criteria should be adjusted often
to remain sensitive to current behavior and keep



744

reinforcement differential and intermittent. Consis-
tently intermittent reinforcement is essential to suc-
cessful differentiation because it generates persis-
tence in the face of extinction. The experimental
and applied literatures are both replete with dem-
onstrations that a prior history of intermittent re-
inforcement generates far more responding during
extinction than does a history of continuous rein-
forcement. Hence, rather than wait for most re-
sponses to meet criterion and then drastically re-
ducing reinforcement frequency by shifting criteria
infrequently, it is better to change criteria frequently
to maintain both a relatively comstant teinforce-
ment density and an intermittent one. Both char-
acteristics decrease the likelihood of losing control
over responding prior to the acquisition of the ter-
minal response.

Percentile Schedules: Formalized Shaping

The preceding discussion suggests that any at-
tempt to formalize these rules into a procedure
should include the following characteristics: (a) It
should set criteria relative to current behavior and
change them rapidly as behavior changes. (b) It
should establish criteria in such a way that some
suffidently large proportion of responses is rein-
forced, but that proportion cannot be so latge as
to dilute the differential nature of the contingency.
(¢) It should provide reinforcement consistently and
intermittently, despite any changes in behavior upon
which that reinforcement ultimately depends. (d)
Finally, it should provide some terminal response
definition.

The third characteristic is the most problematic
in formalizing shaping; the procedure must provide
a consistent, intermittent density of reinforcement.
The traditional view of shaping holds that respond-
ing is a dependent variable subject to change and
not an independent one that can be controlled prior
to its occurrence. Yet, reinforcing only responses in
the criterion zone (required by the second charac-
teristic above) while keeping reinforcement density
constant at some specified intermittent value seem-
ingly requires prior knowledge of, and control over,
the proportion of criterional responses. For exam-
ple, if the desired probability of teinforcement is
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.25, and all criterional responses are reinforced, then
the criterion must be set so that 25% of all responses
exceed the criterion. This is contrary to the role
normally attributed to responding in a shaping pro-
cedure, where changes in the probability of criter-
ional responses define the effectiveness of a differ-
entiation rather than being subject to expetimental
control.

How can responding be characterized so that the
probability of criterional and noncriterional re-
sponses could be specified in advance? The percen-
tile solution, developed and expanded by Platt
(1973) and colleagues, is momentarily to abandon
the exact physical charactetistics of the response and
treat it as an ordinal quantity. Ordinal quantities
are values that carry only an assodated rank, as
opposed to the more typical means of quantifying
observations by assigning a cardinal number and a
standard unit. For example, height can be cardinally
measured as 6 ft 8 in., ot it can be ordinally mea-
sured by comparing two people and placing the
taller one on the left.

We generally prefer to use the cardinal method
because it provides more detailed information.
However, there are times when measuring things
ordinally has its advantages. Suppose the horizontal
line in the top panel of Figure 3 represents a di-
mension along which a particular response of in-
terest may vary. Using the running example again,
the response is an episode of running and the di-
mension is the distance run. The probability that
the next response (a run) will fall somewhere along
this dimension is 1 (all runs have some distance).
Suppose that the first run sampled falls at Point
A, depicted in the second panel of the figure. How
likely is it that the next run will be less than A,
and how likely is it to exceed A? Intuition may
suggest that the next run is equally likely to fall
above or below the single observation at A, and
that is in fact the case. Suppose the next run has
the value represented by the point labeled B in the
third line. With what probability will the run after
that fall into each of the three intervals bounded
by the two observations (i.e., below A, between A
and B, and above B)? Now intuition suggests that
values less than A or greater than B should be
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observed proportionately more often than ones be-
tween A and B, because the interval AB is smaller
than the other two intervals. In fact, a subsequent
response will again fall into each interval with equal
probability, or one third of the time. Adding a
third observation, at C in the fourth panel, generates
four intervals by splitting the interval from A to B
into the intervals AC and CB. Although these two
intervals are clearly not the same size, the proba-
bility of the next observation falling into each in-
terval bounded by C, and the other two intervals
as well, is one fourth.

The generalization derived from the above ex-
ample is that 7 previous observations create m +
1 intervals, one of which must contain the next
observation. This fact alone is insufficient to derive
percentile procedures. A single, simple constraint
must be attached: Observations must be sampled
randomly and independently from the population
of values. This means that knowing the value of
the current response cannot help to predict the
occurrence of a later one. If these two conditions
are met, the probability of a criterional response
can actually be predicted and controlled (i.e., spec-
ified in advance). Even when this assumption is
dlearly violated, some steps discussed below can be
taken to maintain control over reinforcement prob-
ability.

The counterintuitive notion that intervals of dif-
ferent sizes are equally likely to contain the next
observation atises because the line represents a car-
dinal scale, but the question of which interval will
contain the next observation relates to the ordinal
properties of the observations. For the moment,
ignore the fact that there are physical values at-
tached to any of these observations, and treat them
solely in terms of their ranks. In any distribution
of values, there is one and only one value ranked
1st, 2nd, 3rd, and so forth. The question of interest
is not “What is the expected value of the next
obsetvation (i.e., what distance will next be run)?”’
but rather is “Where will the next observation
rank?”’ If the assumption of independence is met,
it will be as likely to rank first or last or anywhere
in between, depending on the number of prior
observations. The probability that it will rank be-
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Figure 3. Illustration of the how successive observations
(denoted A, B, etc.) divide a dimension into intervals having
equal probabilities of containing the next response. See text
for details.

tween 1 and 7 + 1is 1 (i.e., it must fall somewhere
on the line). This also equals the sum of the prob-
abilities that it falls into each of the intervals defined
by each observation. That is, the bottom line is
segmented into four parts by the three prior ob-
servations A, B, and C. If the next observation fell
below A, it would receive a rank of 1st (lowest);
if it fell between A and C it would net a rank of
2nd lowest, between C and B a rank equal to 3rd
lowest, and above B a rank of 4th lowest. Each of
these rankings is equally likely by definition. Fur-
ther, the sum of the probabilities of ranking 1st,
2nd, 3rd, or 4th must equal 1 (i.e., no other ranks
exist). Hence, each rank will occur with a proba-
bility equal to the reciprocal of the number of
intervals available to contain the next response.
Thus, given any distribution of 7 prior observa-
tions, the probability the next observation will fall
into each one of the m + 1 intervals bounded by
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Figure 4. Upper panel: generalization of the effect illus-
trated in Figure 3. Middle panel: illustration of how criteria
can be established in terms of exceeding particular ranks, and
the resulting effects on the probability of observing a criter-
ional response. Lower panel: inversion of the middle panel,
demonstrating the percentile equation, which determines the
rank (&) that must be exceeded in the current distribution
of m responses to observe a criterional response with the
specified probability w.

these observations is 1/(m + 1), as shown for m
=1, 2, or 3 in the bottom three panels of Figure
3, respectively, or for the generalized case in the
top panel of Figure 4.

The relevance to shaping depends on under-
standing one implication of the above. If the prob-
ability that the next observation will be ranked in
any one interval defined by 7 observations is 1 /(m
+ 1), the probability that it will fall into any two
of those intervals is twice that, or 2/(m + 1), the
probability that it falls into any three would be
3/(m + 1), and so on. Hence, the probability that
the next observation will fall into any one of £
intervals defined by m obsetvations is £ times the
probability of falling into each interval, or £/(m
+ 1). This extension suggests the step taken in the
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second panel of Figure 4—establishing a criterion
at the Ath rank. That is, rather than setting the
criterion at a particular fixed, physical value, the
criterion can specify that the next observation, to
meet criterion, must rank higher than the value
currently ranked 4. The middle panel of Figure 4
illustrates the effects of establishing criteria at dif-
ferent values of £. When £ = 1, responses will be
considered criterional if they exceed the response
currently ranked 1st (A). The probability of not
meeting criterion equals the probability of falling
into the one interval below A, which is £/(m +
1) = 1/(3 + 1) = .25. The probability of a
criterional response (denoted ) is the complement,
ot w=1—{k/(m + 1)} = .75. Setting the
criterion (&) so that the 2nd rank (C) must be
exceeded raises the probability of not meeting cri-
terion to the sum of the two intervals below C, or
2/(m + 1) = 2/4 = 5. The probability of meet-
ing it is again the complement, or w =1 — .5 =
.5. If all observations must be exceeded (i.e., & =
3), then the probability of a criterional response
willbe w =1 — [k/(m + D} =1 — 3/4 =
.25. Thus, as the criterion is made more stringent
(i.e., as £ is increased), the probability of observing
a criterional response decreases accordingly, as in-
tuition would suggest.

Notice that the rank and the chronological order
of the observations are independent. In the sample
shown in the figure, the chronological order has
been indicated by the letters A, B, and C, whereas
the ranks are specified 1st, 2nd, or 3rd. Hence,
Observation C occurred after Observation B, but
would be ranked before it, because relative values
along the response dimension define ranks, not the
temporal order of occurrence.

The equation above can be rearranged to specify
the rank that must serve as the criterion (£) in order
that criterional events occur with a specified prob-
ability w. lf w = 1 — [£/(m + 1)}, then sub-
tracting 1 from both sides and reversing signs yields
1 — w=k/(m + 1), and multiplying both sides
of the equation by 7 + 1 yields £ = (m + 1)(1
— w). This expression, the basic percentile equa-
tion, provides the critetion rank order £ that must
be exceeded to witness a criterional response with
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a trainer-specified probability w, given a sample
of m prior observations. For example, to observe
a criterion response half the time (ie., w = .5)
given three prior observations (i.e., = 3), the
rank order to be exceeded would be set to £ = (3
+ 1)(1 — .5) = 2. A response would be considered
criterional if it exceeded the value represented by
the 2nd rank (C) in the middle panel of Figure 4.

By specifying a criterion relative to a distribution
of behavior rather than relative to some fixed phys-
ical value, the probability of a criterional response
on the next trial is determined not by the client,
but by the trainer. But what of subsequent trials?
That is, suppose the next response occurs at the
value denoted by D in the bottom panel of Figure
4. How should the criterion for the next response
be evaluated? One possibility would be to add each
new observation to the list of previous values, in-
creasing the value of 7 in the above equation.
However, this strategy does not distinguish current
observations from more remote ones. Although
above I noted that chronological order was un-
important in ranking observations, we must at some
point recognize that as observations become more
and more remote, they may no longer adequately
characterize the population of values likely to be
observed now. An alternative that overcomes this
problem is to update the distribution of observa-
tions by replacing the oldest observation in the
distribution (A) with the newest (D). Doing so
maintains the number of comparison observations
(m) constant, such that with a constant w the
required value of £ is unaltered. For example, to
observe a critetion response with a probability of
.5, it is again necessary that the next response exceed
two of the three observations. This would now
mean that the criterion would be set at the value
represented by D, because the comparison distri-
bution now consists of Observations B, C, and D,
with the latter ranked 2nd of the three (see the
bottom of Figure 4). Note that the current response
becomes part of the comparison memory only after
all decisions concerning its criterional status have
been made. The cutrent response is never compared
to itself, given that, by definition, it can never
exceed itself.
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Updating the comparison distribution with each
response explicitly does what skilled shapers do.
Although we start differentiating responding where
the subject is, as the comparison distribution
changes, the criterion changes with it to keep the
overall probability of a criterion response relatively
constant. Percentile schedules set the criterion at a
fixed rank to control overall criterional response
probability, and then let changes in the physical
values of the responses comprising the comparison
distribution determine where the physical critetion
will fall. Note that only the physical value of the
criterion changes; the rank order (i.e., £) of that
physical value remains constant. Hence, behavior
is differentiated only in the sense that physical val-
ues change; the criterion remains constant at a par-
ticular rank order, providing a constant probability
of criterional responses. In this way, percentile
schedules concurrently shape behavior (changing
values along a physical dimension) while controlling
the probability of criterional responses (defined or-
dinally).

At this point, it may be helpful to consider a
hypothetical example of how a percentile schedule
might be programmed in an applied setting. In
posing any particular example, I ask the reader’s
indulgence in granting me a degree of latitude
sufficient to illustrate the workings of the schedule
without tackling the myriad additional problems
that make applied work especially challenging, but
that are not uniquely relevant to the use of per-
centile schedules (e.g., defining responses, observing
and recording strategies, patient compliance, etc.).
Failure to mention these important aspects of be-
havior analysis should not be taken as an admission
of ignorance or disregard. They represent complex
problems that must always be addressed, indepen-
dent of the exact procedure used, and for this reason
are not germane to a discussion of percentile sched-
ules per se.

To illustrate how a percentile schedule might be
used to help define response criteria in an applied
setting, consider an example involving “‘task en-
gagement.”’ Assume I wish to increase the time a
developmentally disabled client devotes to a vo-
cational task while at the work station. I might
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Minute [1]2]3]4]5]6]7]8]9]10]11]12]13]14]15]16[17] 18]19]20]
Baseline
Percentile
Current criterion | - [ - [ -|-|-| -] -||4]|4]|5]|5 5/413|3|5]|5 8
On-taskintervals [ 1 {3 (2 (34|12 |1/ 2]|5]|4]3 313 51218 e
Reinforcement :
Cf)mpari§on Tt T 1 Current Criterion
Distribution K
During Minute: 8 3 211
9 2 (112
10 2111121(5
11 1({2|5]|4
12 254
13 514
14 4
15
16
17 5
18 5
19 5
20 5
Figure 5. Hypothetical example illustrating the operation of percentile schedules.

decide to divide each minute into 5-s intervals and
record whether the client remained “‘on task’ dur-
ing the entire interval. (Other recording techniques
might be preferable; this example has been chosen
to provide a moderate range of observable values.)
This regimen generates a score each minute ranging
between 0 (no intervals on task) and 12 (consis-
tently on task). Presume further that a reinforcer
has previously been identified for this client. The
first decision required is how often to provide re-
inforcement. Assume that my previous history with
this client suggests that, on average, a reinforcer
delivered every 5 min should suffice.

Although technically not required, a baseline

condition would probably be conducted first. This
serves two functions: (a) It provides an indication
of the current level of behavior, and (b) it provides
a comparison for the effects of intermittent rein-
forcement alone. The baseline provides the same
reinforcement frequency as the percentile procedure
but does not make it contingent on the degree of
task engagement. This can be accomplished by
presenting a reinforcer at the end of each 1-min
interval with a random probability of .2 (i.e., on
the average, every 5th min).

Suppose this procedure generates the behavior
shown for the first 7 min in Figure 5. The row
labeled “‘current critetion’ contains no value under
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baseline, because it is by definition undefined (i.e.,
reinforcement is not contingent on task engage-
ment). Reinforcement (denoted by the darkened
square in the row labeled “‘reinforcement”) is de-
livered by the prearranged random probability after
Minutes 2 and 6. The mean number of on-task
intervals during baseline is approximately 2.3 per
minute, and the mean number of intervals engaged
prior to reinforcer delivery is 2.5. The correspon-
dence between these values indicates that reinforce-
ment is nondifferential (i.e., the degree of task en-
gagement does not influence reinforcement delivery).

Instituting a percentile procedure involves first
substituting .2 for w in the equation above, such
that £ = (m + 1)1 — .2) = .8(m + 1). Next,
a value must be assigned to m (i.e., how many
prior observations will be used as comparison val-
ues?). This is not a completely arbitrary dedision,
as will be discussed shortly. For purposes of the
current example, however, setting 7 to 4 yields a
value for £ = .8(5) = 4. Hence, to observe cri-
terional responses with a probability equal to .2
(w), the current score should be compared to the
score from the most recent four intervals (7), and
if it exceeds the fourth rank-ordered value (£) in
the list of prior scores, it is critetional. If criterional
and only criterional responses are reinforced, the
probability of reinforcement and the probability of
criterional responses will be equal (i.e., .2).

The most recent four scores during Minute 8 are
those from Minutes 4 through 7. As such, they
define the initial comparison distribution for the
percentile condition. During that time, my client
was on task for three, four, two, and one interval(s),
respectively. Ordering these observations from low-
est to highest associates one, two, three, and four
intervals with Ranks 1 through 4, respectively.
Hence, the current criterion score is 4 (the 4th-
ranked value). The score during Minute 8 is ac-
tually 2. Because this does not meet the criterion,
no reinforcement is delivered. For the next minute,
the comparison distribution is changed by replacing
the most remote score with the most recent one.
The comparison distribution now comes from Min-
utes 5 through 8, or four, two, one, and two in-
tervals on task, which when ordered becomes 1, 2,
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2, and 4. Thus, the criterion score remains 4. Dur-
ing this minute, the number of intervals engaged
in the task (five) exceeds the criterion and rein-
forcement is delivered. During the next 4 min, the
4th-ranked value in the comparison distribution is
always five, the current score never exceeds the
criterion, and no reinforcement is provided. In Min-
ute 14, the 4th rank in the distribution falls back
to 4, and in the next minute it falls back to 3,
because the current distribution now contains three,
two, three, and three intervals engaged. This illus-
trates how percentile schedules, while maintaining
contingencies to differentiate “more” engagement
(i.e., the largest value in the comparison distribu-
tion sets the criterion), also allow the definition of
“more’ to slide back towards a lower score if be-
havior consistently moves in that direction. During
Minute 15, the number of engaged intervals equals
the criterion, raising the question of how to treat
ties. Classifying all ties as criterional overestimates
the expected probability, whereas classifying them
as noncriterional underestimates it. The problem is
magnified as ties become more frequent. If a se-
quence of 20 observations all tied, treating all as
criterional or noncriterional would result in a re-
inforcement probability of 1 ot 0, respectively, across
those observations, and not the .2 probability pro-
grammed. The simplest solution is to select ties
with a random probability equal to % and call
them criterional. Here, the observation is not clas-
sified as criterional and as a result does not generate
a reinforcer (that this is a function of a tie decision
is indicated by the gray shading in the figure).
Continuing through Minute 20 results in two more
criterional scores, a score of 5 in Minute 16, when
the criterion was 3, and eight i tervals engaged 2
min later when the criterion was 5. As a result,
three criterional responses are observed during the
13 min of the percentile procedure, for an obtained
probability of .23, within the sampling error of the
probability programmed. The mean score during
this time was 3.8, whereas the mean score preceding
reinforcement was 6.0. This difference defines the
differential nature of the reinforcement contingency.

The above equation defining the basic percentile
schedule provides a fixed, specified probability of
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a criterional response at all times during the course
of shaping. If reinforcers follow only criterional
responses, as is most likely in applied settings, the
probability of reinforcement will also equal w, and
reinforcement will be maximally differential. That
is, reinforcers will be delivered only after responses
that are relatively closer to the terminal response
along the dimension being differentiated (e.g.,
“more” time on task). Criteria are always set rel-
ative to current behavior, so not only does training
start with the client, it stays and ends with the
client. Criteria are updated with each response, re-
maining most responsive to changes in behavior.
Finally, the probability of a criterional response can
be specified to be whatever works best for that
particular client—response—teinforcer combination,
maximizing the differential nature of the contin-
gency (i.e., reinforcing only instances of “more”
engagement, as defined by the current distribution)
but providing reinforcement consistently and in-
termittently in order to maximize persistence and
decrease the probability of the frustration, aggres-
sion, emotional responses, and tesponse elimination
associated with extinction. Determining the optimal
criterional response probability is not a problem
unique to percentile schedules, but rather is an
empirical question faced with each new procedure
and /or response. Unlike other procedures, percen-
tile schedules allow an empirical answer to this
question by directly controlling reinforcement pa-
rameters independent of behavior.

Percentile schedules appear to meet all the re-
quirements for a viable procedure to formalize
shaping except the last—they do not specify a tet-
minal response. The criterion is never specified as
an absolute; rather, it is described only in relative
fashion (i.e., exceed the £th rank). Yet, even here,
percentile schedules help to focus our understanding
of shaping. There is only one terminal response of
all shaping—to do better on the next trial than on
previous trials. This is what percentile schedules
program, where “better” is defined as exceeding
the kth rank and “previous trials” is given by the
most recent m observations. Because criteria are
evaluated relative to ongoing behavior, there is nev-
er a need to stop shaping. Once acquisition is com-
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plete and behavior stabilizes, the percentile schedule
can still be used to select the same overall proportion
of responses for reinforcement. And if an external
event should disrupt responding, the criteria au-
tomatically adjust to take this into account and
shape responding back to previous levels while en-
suring a constant reinforcement density.

Implementing Percentile Schedules in
Applied Settings

Percentile schedules make two requirements not
found in traditional operant conditioning proce-
dures. First, they require a continuously updated
record of the most recent 7 responses that, second,
can at least be partially ranked. Modern computers
of all sizes are fast enough to program percentile
contingencies with no discernible delays between
responses and reinforcers. But computers are not a
prerequisite to the implementation of percentile
contingencies. Selecting particular pairs of criter-
ional response probabilities and comparison distri-
bution sizes makes it possible to program percen-
tiles with a pencil and paper.

An updated list of the last 7 responses can easily
be kept on a device similar to that shown in Figure
6. A roll of paper like that used in event recorders,
adding machines, and cardiac monitors is threaded
through a window with lines demarcating each
comparison observation. Each new response is re-
corded in a slot marked “‘current response,”’ located
just below the window. Once recorded, the paper
is advanced one observation out the top of the
device, such that the latest observation (at the bot-
tom) replaces the oldest one (at the top) in the list.
An adjustable shutter slides vertically to vary the
number of prior observations () visible, as noted
by the numbers along the right side. In this way,
the most recent 7 responses will always show in
the window to provide the cutrent comparison
memory.

Ranking the observations is a more difficult, but
surmountable, task. Even in the laboratory we do
not spend the time required to rank all observations
and then determine where the physical value of
rank £ is. Rather, the computer code compares the
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current value to every value in the comparison
distribution. If the current value exceeds the com-
parison value, a counter is incremented. As soon
as that counter exceeds £, the response is considered
to be criterional. If, after all comparisons have been
made, the counter still does not exceed £, the re-
sponse is noncriterional. This procedure is faster
than sorting, but is still of little help to someone
lacking a computer.

An alternative approach is illustrated in the top
panel of Figure 4. The expected probability that
the next response will fall into each interval is given
by 1/(m + 1). Although it is difficult to sort
through a whole list of values, it is relatively easy
to scan a list and determine the largest value. If
we always set the criterion to the largest value in
the comparison distribution, criterional responses
will be observed with a probability equal to 1 /(7
+ 1). To observe a particular probability w of a
criterional response, therefore, 7 can be set to the
value given by m = (1 /w) — 1. For example, to
obtain a criterion probability of .2, 7 = (1/.2) —
1 =5 — 1 = 4 observations are needed. This was
the approach used in the task-engagement example
above. The suggestion of the sliding window in the
above device now may be more understandable.
By using this calculation to determine the memory
size, and then adjusting the window to the appro-
priate number of values, it is necessary only to
determine whether the current value is longer than
any currently in view. If so, it is a criterional re-
sponse, and will occur with the probability given
by w.

Limitations on Applying
Percentile Procedures

There are only two formal assumptions involved
in deriving the percentile schedule equation: (a)
Behavior must be measured in such a way that
ordinal ranks can be assigned, and (b) those ranks
must not be sequentially related (i.e., successive
observations must represent random and indepen-
dent samples from the population of response val-
ues). Dealing with the second limitation first, the
degree to which responses are sequentially related
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Figure 6. [Illustration of a recording device designed to
facilitate the programming of percentile contingencies in the
absence of computers. Response values are recorded on the
strip of paper in the slot at the bottom of the window. Prior
to each new trial or response, the paper is advanced one
response up, such that only the most recent responses are
visible. The vertical shutter can be used to adjust the number
of previous observations visible at any time (). See text for
further description of use.

increasingly affects the operation of percentile
schedules as the comparison distribution size ()
decreases. Consider a situation that violates the
assumption that observations occur randomly and
independently. Suppose that each response has a
.8 probability of being followed by an even longer
value (i.e., four out of every five times, the next
value is longer). Suppose further that the pro-
grammed probability of a criterional response (w)
is .5. Using the shortcut suggested above, this prob-
ability is plugged into the equation for 7 to solve
for the memory size that will yield the appropriate
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Minute [1]2]3]4]5]6]7]8]9]10]11]12]13]14]15]16[17]18]19]20]
Percentile

Current criterion | - (12 |3| 4|5 31415 2 415 2134

On-taskIntervals| 1 {2 |3 (4| 5| 1|2

Reinforcement

Comparison
Distribution

During Minute:

Figure 7.

probability if the current value exceeds the longest
comparison observation. This value is 7 = (1/w)
— 1=1/5 — 1 = 1. Hence, using only the
most recent response as a comparison value, we
begin programming the percentile schedule.
Figure 7 presents an illustrated case in which »
= 1 and w = .5. To satisfy the requirement of a
.8 probability of a longer subsequent observation,
the score (using the task-engagement example again)
repeats a cycle of values 1, 2, 3, 4, and 5. Because
the first value observed has no compatison, suppose
we arbitrarily call it criterional with a probability
of .5. This is denoted in the reinforcement square
by gray shading. During Minute 2, the criterion is
one and two intervals are scored as engaged, so

Effects of nonrandom observations on a percentile schedule with & = .5 and m» = 1.

the response meets criterion and is reinforced, as
indicated by the dark square in the row labeled
“reinforcement.”” In the next minute the criterion
is two and the score is 3, so again reinforcement is
delivered. The criterion in the next 2 min is three
and four, respectively, and the number of intervals
engaged is four and five, so reinforcement is pro-
vided on each occasion. In Minute 6, when the
cycle begins again, the ctiterion is five but only one
on-task interval is scored, so reinforcement is not
delivered. During Minutes 2 through 6, four of
five scores are considered criterional and are rein-
forced. This represents a substantial departure from
the .5 probability nominally programmed by the
percentile schedule. Further, there is no indication
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Minute [1]2]3]4]5]6[7]8]9]10]11]12]13]14]15]16][17]18]19]20]
Percentile E 5
Current criterion | - | - | -2 |3 | 4 314 2 314 2 3

On-task Intervals | 1|2 |3

Reinforcement

Comparison
Distribution T 1

During Minute:
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Figure 8. Effects of nonrandom observations on a percentile schedule with & = .5 and m = 3.

that this probability will decrease with further sam-
pling—each time the cycle repeats, four out of every
five scores are considered criterional. This is because
percentile schedules are based on the presumption
that the next observation is as likely to be ranked
lowest as highest—that each interval has an equal
likelihood of claiming the next response. Yet in
this example, responses are falling on the high side
of the last observation 80% of the time. This asym-
metry defines a sequential dependency. Knowing
the most recent response allows prediction of the
next one’s value (i.e., 80% of the time the next
response will be longer than the current one, rather
than the expected 50% that it will fall either above
or below).

Although sequential dependencies diminish the
ability of percentile schedules to control criterional

response probability, their effects can be minimized
by increasing the compatison distribution size. Con-
sider the same scenario, but with a memory size of
three. From the percentile equation above, & = (m
+ 1)(1 — w) = (4)(.5) = 2, the current response
will be considered criterional if it exceeds two of
the three most recent values. Figure 8 illustrates
this case. Reinforcement is randomly assigned with
a probability of .5 after each of the first 3 min,
because of the lack of sufficient comparison ob-
servations. In Minute 4, the critetion is two and
the score obtained is 4, so reinforcement is deliv-
ered. In the next minute the criterion is three and
the client remains on task for five intervals. During
both Minutes 6 and 7 the criterion is four, but
only one or two intervals are judged as being on
task; hence, no reinforcement occurs. In the next
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minute the criterion is two, and three on-task in-
tervals are scored, resulting in reinforcement. The
cycle then repeats. Adding two additional obser-
vations to the comparison distribution increases the
correspondence between programmed and obtained
criterional response probability over that generated
with only a single comparison value. Where the
obtained probability of criterional responses had
been .8 when 7 = 1, here it is only .6, which is
much closer to the nominally programmed value
of .5. Task engagement continues to show strong
sequential dependencies, in that scores during 4 out
of every 5 min are longer than their immediate
predecessor. However, these scores are no longer
guaranteed to be criterional because it is not suf-
ficient to exceed only the last score; rather, the
current score must exceed two of the three most
recent responses. Because more than a single score
is used as a comparison, the effects of local variation,
and hence sequential dependencies, are diminished.

Although not always eliminated, the effects of
sequential dependencies are greatly limited by in-
creasing the comparison distribution size. This
property allows percentile schedules to be used even
in situations in which the formal assumptions un-
derlying their derivation are violated. However, their
use in these circumstances would likely be limited
to those involving computer control, because com-
parisons would have to be made to more than the
largest comparison value.

The other “limitation,” that responding be or-
dinally rankable, could actually aid application of
percentile schedules. In the laboratory, percentiles
have been used exclusively to shape responding
along a single dimension—to shape longer or short-
er interresponse times (e.g., Alleman & Platt, 1973;
Arbuckle & Lattal, 1992; Galbicka & Platt, 1986;
Kuch & Platt, 1976), response durations (e.g.,
Platt, 1984; Platt, Kuch, & Bitgood, 1973), run
lengths (e.g., Galbicka, Fowler, & Ritch, 1991;
Galbicka, Kautz, & Jagers, 1993; Galbicka, Kautz,
& Ritch, 1992), different spatial response locations
(e.g., Davis & Platt, 1983; Galbicka & Platt, 1989;
Scott & Platt, 1985), or variable response sequences
(Machado, 1989). Although there may be appli-
cations that could easily be envisioned as changing
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a single dimension of behavior (e.g., the running
or task-engagement regimens described earlier), it
is more likely that behaviors to be shaped in both
research and applications with human subjects will
involve behavioral change along multiple dimen-
sions. Although to this point changes along single
dimensions have been emphasized, the fact that
percentile schedules do not deal directly with phys-
ical aspects of behavior, but only their ranking
relative to prior behavior, implies that the number
of response dimensions involved is immaterial. Any
behavioral sequence, from any identified starting
point to any terminal response, can be subjected to
the workings of a percentile schedule to the extent
that each response in the sequence can reasonably
be ranked relative to every other response. This is
not a burden unique to percentile schedules because
all shaping requires some means of attributing di-
rectional change (and hence some crude ranking)
to behavior across many dimensions. Percentile
schedules actually remove some of the burden by
identifying steps that require a modified response
definition.

To illustrate, suppose we wish to train a devel-
opmentally disabled client to drink fluid though a
straw. Prior observation of the behavior leads the
shaper to suggest that the following five behaviors
might be involved: (1) holds glass, (2) directs glass
toward mouth, (3) holds straw with other hand,
(4) directs straw into mouth, and (5) sucks on straw.
These five behaviors can easily be ranked 1 to 5,
with 1 being furthest from the terminal response
and 5 being closest. A percentile schedule could be
imposed by recording the response value (i.e., 1
through 5) on each trial. Whether our conception
of the response matches the subject’s will be evident
in the relative frequency of each of the different
rankings. For example, if after collecting substantial
data an analysis revealed that Step 3 (i.e., holds
straw with other hand) was never recorded, but
instead the client progressed directly from Step 2
to Step 4 by holding the glass and manipulating
it to position the straw in his or her mouth, then
Step 3 probably represents an overly specific or
functionally irrelevant response category for this
subject. On the other hand, if some other step
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showed a disproportionately high frequency of oc-
currence, it is possible that further definition may
be required to distinguish functionally the multiple
response classes that are likely being included under
this heading. The interesting thing about percentile
schedules is that making such modifications on line
does not alter their effectiveness. Refining response
definitions by adding or removing particular classes
at any time during shaping has no effect because
the number of response classes is irrelevant to the
operation of percentile schedules; the only require-
ment is that these response classes must easily be
ordinally rankable with respect to all other re-
sponses. By allowing behavior to be the ultimate
arbitrator in deciding where response classes “‘nat-
urally fracture,” the potential ramifications of mis-
judging these classes are limited. More classes can
be added as they are identified with experience,
and superfluous ones can either be dropped or re-
tained.

The Shape of Things to Come?

I have argued that percentile schedules represent
a formalization of the rules of shaping. I have tried
to present the derivation of the equations that define
petcentile schedules in such a way as to make this
relation clear. Finally, I have tried to demonstrate
that little instrumentation is necessary to program
these procedures. The applied utility of percentile
schedules ultimately rests in the hands of the ap-
plied community. I only wish to note that percentile
schedules do not impose any additional constraints
and may actually remove some of those that limit
application of other behavioral procedures. The evet-
present problems of observation and measurement
in applied settings will obviously affect application
of percentile schedules as well. However, because
percentile schedules use only ordinal response val-
ues, many problems associated with traditional pro-
cedures may be circumvented.

The research potential of these procedures is
equally far-reaching. I have treated the probability
of criterional responses and of reinforcement as
equivalent throughout most of this paper, but this
is true only if all criterional and only criterional
responses are reinforced. This is generally the case
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in applied settings because these conditions most
rapidly change behavior. However, a research set-
ting holds one further level of complication. The
more general scenario characterizing all attempts at
response differentiation is represented in Figure 9.
Training involves two independent decisions on the
part of the experimenter: (a) whether the response
is criterional or not, as indicated by whether it falls
into rows indicated W and W, and (b) subsequently
whether or not to reinforce that response. This
second decision is independent of the first and de-
termines whether the response falls into the two
columns labeled Z and Z. Responses falling in Cell
a are criterional responses that were followed by
reinforcement, and those in Cell 4 are criterional
responses that were not reinforced. Similarly, re-
sponses in Cell ¢ are noncriterional reinforced re-
sponses, and those in Cell 4 are noncriterional non-
reinforced responses. These cells describe all potential
joint occurrences of responding and reinforcement.
The percentile equation specifies segregation by cri-
terional response probability only (i.e., it specifies
whether the current response falls in the upper row
or the lower one); it technically does not speak to
whether that response, criterional or not, is rein-
forced.

Two additional parameters are needed to define
the conditional probability of reinforcement for cri-
terional and noncriterional responses, termed # and
v, respectively (e.g., Galbicka & Platt, 1986, 1989;
Scott & Platt, 1985). These specify the probability,
given the prior occurrence of a critetional (or non-
criterional) response, that a consequence also occurs.
As the conditional probabilities of reinforcement
increase, the relative proportion of responses on the
left side of the appropriate row increases. Thus,
increasing # increases the proportion of criterional
responses falling into Cell  (i.e., without changing
the total number of responses in the top row, in-
creasing # shifts responses from Cell 4 to Cell ).
Increasing v increases the proportion of noncritet-
ional (bottom row) responses falling into Cell c.
Each of these probabilities is independently speci-
fiable, from each other and from the probability of
a criterion response ().

The matrix in Figure 9 represents an extensive
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Consequence

Z

Criterional Response

Z

u=Pr(S*|W)=a/(a+b)

v=Pr(S*|W)=c/(c+d)

w=Pr(W)=(a+b)/(a+b+c+d)

Figure 9. Two-by-two table showing the joint effects of specifying the probability of a criterional response () and the
conditional probabilities of reinforcement for criterional (#) and noncriterional (v) responses. See text for details.

research program. By using the percentile equation
to generate a spedific probability w of a criterional
response, the experimenter gains control over how
responses get segregated into the two rows of the
matrix. Specifying particular values of # and v
allows researchers to specify further how events in
each of those two rows are distributed with respect
to reinforcement. Combining these two operations
for the first time allows researchers to dictate in
advance the expected frequencies of each of the
four cells, and hence to control the relation between
criterional responding and reinforcement. This
prompts a number of previously unanswerable
questions. For example, what happens to shaping
as u increases? as v increases? as w increases? In
general, we might expect that increasing # (rein-
forcement of criterional responses) would facilitate
shaping, whereas increasing v (reinforcement of
noncriterional responses) would impede it. But what
of the effect of w? The answer here is less clear.
The suggestion offered by Rule 3 is that optimal
shaping will occur when the probability of a cri-
terional response is not so small that contingent
reinforcement is too infrequent, but not so large as

to be virtually nondifferential. Hence, modifying
w may produce an inverted U-shaped function with
respect to response differentiation. How might this
interact with the relations above? That is, given that
increasing # enhances acquisition and increasing »
retards it, how are these effects quantitatively mod-
ified by the proportion of responses considered cri-
terional? In other words, what happens to the slope
of these functions as w changes? Finally, is there a
way we can put all these effects together into some
general index that will correlate with the degree of
shaping under a particular set of parameters? For
example, if increasing # and decreasing v each
enhance acquisition, then acquisition is differentially
correlated with increasing values in Cells # and &
relative to Cells 4 and ¢ in Figure 9. Several mea-
sures of statistical contingency also increase with
such changes and might be used as metrics of the
relation between reinforcement and criterional re-
sponses that map to the changes in behavior pro-
duced (see Galbicka & Platt, 1986, 1989; Scott
& Platt, 1985, for examples of such efforts in-
volving nonhuman subjects).

Percentile schedules represent a radical departure
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from traditional methods in the degree of experi-
mental control they afford. They represent the next
step in the experimental control of variables that
are critical to the modification of behavior; thus,
they could potentially revolutionize our methods
as well as our models of behavior change. Specific
examples of applications presented here can setve
only to focus attention unduly on particular be-
haviors or populations in the applied realm, at the
expense of other, potentially more relevant behav-
iors or populations. But with that caveat in mind,
percentile schedules might, for example, provide
for replacement of vague qualitative labels for *“cog-
nitive abilities” with more extensive, quantitative
formulations of learning and learning disabilities.
A diagnostic video game could be devised that
repeatedly requires the client to select from a ring
of keys the one that unlocks the door barring en-
trance into the next passage. The keys differ along
a number of dimensions, but the one of interest is
key length. Selecting a particular key is considered
criterional if it is closer to some target length, chosen
by the experimenter, than 80% of the previous 7
key selections. This is an example of a targeted
percentile in which responding is shaped to a par-
ticular value instead of in a particular direction.
Targeted percentile schedules are programmed as
two separate percentile schedules. One operates when
the current response is short of the target (i.e., when
the key selected is less than the target value) and
differentially reinforces values Jonger than the 80th
percentile of all recent previous selections that were
also short of the target. The other operates when
the current response is above the target and differ-
entially reinforces responses shorter than 80% of
all responses above the target. These two, simul-
taneously operating percentile schedules control the
overall probability of criterional responses above
and below the target value, but reinforce only the
closest 20% of all responses, causing the distribu-
tion to peak in the area of the target (see Galbicka
et al., 1993, for an example of targeted percentile
shaping).

The rate of acquisition of this task under a variety
of different values of w, #, and » could be used
to increase the precision of behavioral *‘diagnoses”
of different populations. For example, certain de-
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Learning Rate (1/Trials to Acquisition)

0.0 0.5 1.0
Criterional Response Probability (w)

Figure 10. Hypothetical results showing the rate of learn-
ing (1/number of trials to acquisition) as a function of
manipulating the probability of a criterional response (w)
under a percentile schedule. The solid curve shows potential
results from the population at large, the dashed curve illus-
trates potential results from a population of developmentally
disabled clients, and the dotted line depicts results from a
population of gifted individuals.

velopmental disabilities might be associated with
generally slower acquisition than other populations,
under all values of w, when # and v are constant
at 1.0 and 0. Or the relation may be more complex,
such as that shown in Figure 10. The possibility
exists that the degree of learning demonstrated un-
der different w values by different populations could
be used to categorize a range of behavioral popu-
lations. The solid curve suggests that, in general,
the population at large may shape well under a
relatively wide range of w values, with learning
falling off at the extremes when w is relatively low,
and hence reinforcement density is low, or when it
is relatively high; consequently, criterional responses
can be diverse at any particular time. Develop-
mentally disabled clients might demonstrate a more
restricted range of effective parameters (shown by
the dashed line) indicating a greater sensitivity to
sparse reinforcement (i.e., low w values) and a
greater difficulty coming under control of the di-
mension of responding being shaped at higher w
values. On the other hand, gifted populations might
be defined by the production of functions similar
to those shown by the dotted line, with learning
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spread across a range of w values broader than that
for the population at large.

These hypothetical examples are presented only
to illustrate the potential quantitative analysis of
learning that could be derived using percentile pro-
cedures. Percentile schedules provide a better plat-
form from which to develop such “‘diagnostics,”
because they greatly reduce differences arising from
the different behavioral repertoires each subject
brings to the task. Traditional operant procedures
specify behaviors with particular physical charac-
tetistics (responses with particularly defined topog-
raphies, forces, durations, etc.). The variable nature
of operant behavior, in conjunction with the vari-
able histories of reinforcement each subject brings
to the training environment, all but guarantee that
different subjects will respond with different fre-
quencies of responses meeting the fixed physical
criteria. As a result, each subject’s behavior will
interact uniquely with the contingencies of rein-
forcement. Percentile schedules remove the obstacle
posed by individual behavioral differences by de-
fining all response criteria relative to each subject’s
own repertoire. All subjects share exactly the same
probability of emitting a response closer than half
the responses emitted recently, independent of how
close those recent responses were. This holds not
only across subjects but also across time within the
same subject.

In addition to providing a potential diagnostic
tool, percentiles could be used to assess the effects
of variables such as alcohol consumption and drug
administration, sleep deprivation, or aging. They
may also setve to categorize the degree of behavioral
disruption induced by reinforcement for noncriter-
ional responses (i.e., ‘“‘distraction’’) or by lack of
reinforcement for criterional responses (i.e., ‘‘short
attention span’’). Not only could these be used as
diagnostic tools, they also could serve as therapeutic
aids by providing a consistent probability of rein-
forcement while encouraging continued develop-
ment towards some targeted value.

Finally, percentile schedules may help revive
interest in programmed texts (e.g., Holland & Skin-
ner, 1961) and associated personalized systems of
instruction. Programmed texts enjoyed a certain

GREGORY GALBICKA

popularity for a period of time in the 1960s and
1970s, but have recently declined in popularity.
Students often complained that these texts were
boring. Because step size could not be individu-
alized in a printed text, it was often set at a size
almost everyone could achieve, but one most stu-
dents found extremely small.

The advent of computer-based instruction (e.g.,
McDade & Goggans, 1993) provides a means of
presenting varying stimulus frame sequences, and
percentile schedules could provide a mechanism for
coupling that presentation to performance. Nu-
merous multiple choice questions could be devel-
oped to illustrate each key concept in successive
organizational units of the program. Units of the
program would be ranked relative to other units
to establish a progression through the course. The
lowest ranked unit would present questions on fun-
damental concepts, shaping a transition from in-
troductory or lay concepts to those required by the
subject matter. Subsequent units would be ranked
relative to the degree to which correct responses in
this unit depend on the acquisition of textual be-
havior in some prior unit. Each correct response
would generate a rank appropriate to the level of
that question, and achieving some number of con-
secutive correct questions at one level would be
prerequisite to moving on to the next. Incorrect
answers would generate ranks associated with the
prior unit in which material relevant to that answer
was first presented. For example, in a text on be-
havior analysis, a question dealing with an example
of negative reinforcement might include an answer
that makes reference to a decrease in response rate.
Selecting this option would constitute a lower ranked
response because the more fundamental verbal op-
erant that reinforcement is always associated with
an increase in the frequency of an operant is not
evident in the repertoire. By ranking this response
with the level in which the general concept of re-
inforcement was introduced, this error would not
only force return to a prior level, it would specif-
ically return to the level associated with the mis-
understanding leading to the inappropriate selection
of that answer. Specific deficits could then be cor-
rected while adjusting the criterion automatically
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to generate a relatively constant frequency of re-
inforcement.

The application of percentile procedures may
prove to be difficult in the extreme, or the definition
and transduction of multidimensional response
classes too cumbersome to be practically useful.
Even so, the present discussion still serves the heu-
ristic function of explicitly dissecting the funda-
mental components of shaping. Increasing famil-
iarity with percentile schedules leads to the
recognition that a variety of contingencies in daily
life are arranged, not necessarily with any conscious
awareness, in much the same way as percentile
schedules. As social organisms selected to select
behavior, we often act as organic ranking machines.
We maintain continuously updated lists of our
companions’ recent accomplishments and provide
reinforcement with respect to some relatively con-
stant upper proportion of this list. We judge our
children not with respect to some fixed standard,
but relative to their development (i.e., the degree
of change in the behavioral distribution). Once
responses become commonplace, they no longer
merit reinforcement. Rather, the relatively rarer ex-
ceptional response that may yet be quite far from
target but still qualifies as criterional because it is
closer wins our attention. As people mature, be-
havior changes but the critetion remains qualita-
tively the same—do better, be in the upper tail of
the distribution, be exceptional, relative to what
you have been recently. When those around us get
sick or old, we relax the criterion by increasing the
probability of a criterional response or more often
by noting that the current distribution of respond-
ing has regressed.

Understanding percentile schedules may increase
our understanding of the complex social and non-
social dynamics that shape behavior. They allow us
to treat clients similarly, and to define response
criteria to which each subject can relate in a similar
manner. They allow unprecedented control over
experimentally relevant stimuli in operant condi-
tioning and differentiation procedures and provide
a seemingly endless horizon against which to cast
our sights for extensions and applications. How-
ever, like all operant behavior, the benefits accruing
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from the use of percentile procedures can be deliv-
ered only after a response has been emitted. I trust
that, relative to your recent history, you may find
their operation reinforcing.
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